Nonobservation of ¹²C cluster decay of ¹¹⁴Ba*

A. Guglielmetti, R. Bonetti, G. Poli, R. Collatz, Z. Hu, R. Kirchner, E. Roeck, N. Gunn, P. B. Price, B. A. Weaver, and A. J. Westphaß, J. Szerypo**

By means of the on-line mass separator at Gesellschaft für Schwerionenforschung, Darmstadt, we produced ¹¹⁴Ba through the 51 Ni(58 Ni, ^{2}n) reaction, separated it as a ¹¹⁴Ba¹⁹F⁺ beam, and implanted it into a stopper foil positioned in the center of an array of track detectors, which were used to search for ¹²C radioactivity of ¹¹⁴Ba. A total number of $(5.4 \pm 1.7) \times 10^{4}$ ¹¹⁴Ba atoms were implanted. No ¹² event was found after a total exposure time of 116 h, corresponding to a ⁵⁸Ni beam dose of 1.3×10^{17} . The resulting upper limit of 3.4×10^{-5} (84% C. L.) for the branching ratio for ¹²C decay of ¹¹⁴Ba is considerably lower than the limits obtained in previous experiments, which represents an inconsistency at levels of more than 90%. A semiempirical estimate of 19.3 MeV for the upper limit of the Q value for ¹²C decay of ¹¹⁴Ba is derived.

^{*}Abstract of a paper in Phys. Rev. C **56** (1997) R2912-2916

[†]Istituto di Fisica Generale Applicata dell'Universitá di Milano and Istituto Nazionale di Fisica Nulceare, Sezione di Milano, I-20133 Milano, Italy.

[‡]Gesellschaft für Schwerionenforschung, D-64220, Darmstadt, Germany.

[§]Physics Department, University of California, Berkeley, CA 94720

^{**}Institute of Experimental Physics, Warsaw University, PL-00681 Warsaw, Poland.